PREPARATION AND REACTIONS OF PALLADIUM(II) AND PLATINUM(II) DIENYL COMPLEXES

ROSARIO PIETROPAOLO, FRANCESCA CUSMANO, ENRICO ROTONDO, Istituto di Chimica Generale, Università di Messina, 98100 Messina (Italy)

AGATINO SPADARO
Istituto di Chimica Industriale, Università di Messina, 98100 Messina (Italy)
(Received January 31st, 1978)

Summary

The preparation of M (diene $\left.\cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L}) Y$ complexes $\left(\mathrm{M}=\mathrm{Pd}^{\mathrm{II}}\right.$, diene $=$ 1,5-cyclooctadiene, endo-dicyclopentadiene, $\mathrm{L}-\mathrm{L}=2,2^{\prime}$-bipyridyl, 1,10 -phenanthroline, $Y=$ hexafluorophosphate, diene $=$ dicyclopentadiene, $L-L=1,2$-bis(diphenylphosphino)ethane, $Y=$ hexafluorophosphate; diene $=1,5$-cyclooctadiene, $\mathrm{L}-\mathrm{L}=$ ethylenediamine, $\mathrm{Y}=\mathrm{Cl}$; diene = norbornadiene, $\mathrm{L}-\mathrm{L}=2,2^{\prime}$ - bipyridyl, phenanthroline, $\mathrm{Y}=\mathrm{Cl} ; \mathrm{M}=\mathrm{P}^{\mathrm{II}}$, diene $=1,5$-cyclooctadiene, $\mathrm{L}-\mathrm{L}=2, \mathbf{2}^{\prime}$ bipyridyl, 1,10-phenanthroline, $\mathrm{Y}=$ hexafluorophosphate) is reported. For $\mathrm{M}=$ Pd , treatment of the dienyl complexes with hydrochloric acid in methanol gives $\operatorname{Pd}(\mathrm{L}-\mathrm{L}) \mathrm{Cl}_{2}$, while for $\mathrm{M}=\mathrm{Pt}$ the products are $\mathrm{Pt}($ diene $) \mathrm{Cl}_{2}$.

Introduction

The olefin-palladium(II) and platinum(II) complexes undergo many important reactions, especially five-coordination addition [1], nucleophilic attack on the coordinated olefin [2], and replacement of the olefin moiety [3] or of the ligand trans to it [4]. Additions of conjugate bases of alcohols [2], amines [5], carboxylic acids [6], keto esters [7], malonic esters [7] and β-diketones [8] to the coordinated clouble bond of a diene are also well known.

We now describe our studies of the preparation and reactions of [M(diene -$\left.\left.\mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right]^{+}$complexes $\left(\mathrm{M}=\mathrm{Pd}^{\mathrm{II}}\right.$, diene $=1,5$-cyclooctadiene, endo-dicyclopentadiene, $\mathrm{L}-\mathrm{L}=2,2^{\prime}$-bipyridyl, 1,10-phenanthroline, diene = dicyclopentadiene, $\mathrm{L}-\mathrm{L}=1,2$-bis(diphenylphosphino) ethane, diene $=1,5$-cyclooctadiene, $\mathrm{L}-\mathrm{L}=$ ethylenediamine, diene = norbornadiene, $\mathrm{L}-\mathrm{L}=$ phenanthroine $; \mathrm{M}=$ $\mathrm{Pt}^{\mathrm{II}}$, diene $=1,5$-cyclooctadiene, $\mathrm{L}-\mathrm{L}=2,2^{\prime}$-bipyridyl, 1,10 -phenanthroline), some of which were known previously [9].

Experimental

The starting materials $\mathrm{Pd}($ diene $) \mathrm{Cl}_{2}[10],\left[\mathrm{Pd}\left(\right.\right.$ diene $\left.\cdot \mathrm{OCH}_{3}\right) \mathrm{Cl}_{2}[2 \mathrm{a}, 11]$ and Pt (diene) Cl_{2} [12] were made by published procedures. IR spectra were recorded
as Nujol mulls (CsI discs) on a Perkin-Elmer 457 spectrophotometer, with a polystyrene film for calibration. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a PerkinElmer R 24B spectrometer. Conductivity measurements were carried out at $25^{\circ} \mathrm{C}$ over a complex concentration range of $2 \times 10^{-4}-5 \times 10^{-4} \mathrm{M}$ using a LBR Conductivity Meter.

Preparation of $\left[M\left(\right.\right.$ diene $\left.\left.-\mathrm{OCH}_{3}\right)(L-L)\right] P F_{6}$ complexes. General procedure. M (diene) Cl_{2} and AgNO_{3} were mixed at room temperature in 1/2 ratio in methanol. After AgCl had been filtered off, $\mathrm{L}-\mathrm{L}(1 / 1)$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ were added. The solutions were set aside at $-20^{\circ} \mathrm{C}$, and the complexes [$\mathrm{M}\left(\right.$ diene $\left.\left.\cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right] \mathrm{PF}_{6}$ separated. The following were prepared in this way:
$\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right)(\right.$ Bipy $\left.)\right] \mathrm{PF}_{6}=\left(2,2^{\prime}\right.$-Bipyridyl) $(1$-methoxycycloocta-4-ene$80,1 \pi$) palladium hexafluorophosphate, white needles (Yield 67\%) (Found: C, 41.94; $\mathrm{H}, 4.31 ; \mathrm{N}, 5.25 . \mathrm{PdC}_{19} \mathrm{H}_{23} \mathrm{ON}_{2} \mathrm{PF}_{6}$ calcd.: $\mathrm{C}, 41.72 ; \mathrm{H}, 4.20 ; \mathrm{N}, 5.12 \%$).
$\left[\operatorname{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right)(1,10\right.$-phenanthroline $\left.)\right] \mathrm{PF}_{6}=(1,10$-phenanthroline $)(1$-meth-oxycycloocta-4-ene-8 $8,4 \pi$)palladium hexafluorophosphate (Yield 75\%) (Found: $\mathrm{C}, 44.20 ; \mathrm{H}, 4.10 ; \mathrm{N}, 4.92 . \mathrm{PdC}_{21} \mathrm{H}_{23} \mathrm{ON}_{2} \mathrm{PF}_{6}$ calcd.: $\mathrm{C}, 44.00 ; \mathrm{H}, 4.00 ; \mathrm{N}, 4.89 \%$).
$\left[\mathrm{Pd}\left(\mathrm{C}_{10} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right)(\right.$ Bipy $\left.)\right] \mathrm{PF}_{6}=\left(2,2^{\prime}\right.$-Bipyridyl) $(3 \mathrm{a}, 4,7,7$ a-tetrahydro-exo-6-methoxy-endo-4,7-methanoindene-endo- $5 \sigma, 2 \pi$) palladium hexafluorophosphate (Yield 60\%) (Found: C, $43.90 ; \mathrm{H}, 4.00 ; \mathrm{N}, 5.00 . \mathrm{PdC}_{21} \mathrm{H}_{23} \mathrm{ON}_{2} \mathrm{PF}_{6}$ calcd.: C , $44.20 ; \mathrm{H}_{5} 4.03 ; \mathrm{N}, 4.90 \%$).
$\left[\operatorname{Pd}\left(\mathrm{C}_{10} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right)(1,10\right.$-phenanthroline $\left.)\right] \mathrm{PF}_{6}=(1,10$-phenanthroline $)(3 \mathrm{a}, 4,7,7 \mathrm{a}-$ tetrahydro-exo-6-methoxy-endo-4,7-methanoindene-endo- $5 \sigma, 2 \pi$)palladium hexafluorophosphate (Yield 55% after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether) (Found: C , 46.90; $\mathrm{H}, 3.80 ; \mathrm{N}, 4.72 . \mathrm{PdC}_{23} \mathrm{H}_{23} \mathrm{ON}_{2} \mathrm{PF}_{6}$ calcd.: $\mathrm{C}, 47.10 ; \mathrm{H}, 3.86 ; \mathrm{N}, 4.72 \%$).
$\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right)(\mathrm{Bipy})\right] \mathrm{PF}_{6}=\left(2,2^{\prime}\right.$-bipyridyl) (1-methoxycyclocta-4-ene$8 \sigma, 4 \pi$)platinum hexafluorophosphate (Yield 65\%) (Found: C, 35.70; H, 3.72; $\mathrm{N}, 4.30 . \mathrm{PtC}_{19} \mathrm{H}_{23} \mathrm{ON}_{2} \mathrm{PF}_{6}$ calcd.: $\mathrm{C}, 35.88 ; \mathrm{H}, 3.62 ; \mathrm{N}, 4.40 \%$).
$\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right)(1,10\right.$-phenanthroline $\left.)\right] \mathrm{PF}_{6}=(1,10$-phenanthroline $)(1$-meth-oxycycloocta-4-ene-8 $0,4 \pi$) platinum hexafluorophosphate (Yield 70\%) (Found: $\mathrm{C}, 38.28 ; \mathrm{H}, 3.60 ; \mathrm{N}, 4.26 . \mathrm{PtC}_{21} \mathrm{H}_{23} \mathrm{ON}_{2} \mathrm{PF}_{6}$ calcd.: $\mathrm{C}, 38.23 ; \mathrm{H}, 3.49 ; \mathrm{N}, 4.24 \%$).

Preparation of $\left[\mathrm{Pd}\left(\mathrm{C}_{10} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right)(\mathrm{P}-\mathrm{P})\right] \mathrm{PF}_{6}=$ (1,2-bisdiphenylphosphino-ethane)(3a,4,7,7a-tetrahydro-exo-6 methoxy-endo-4,7-methanoindene-endo$8 \sigma, 4 \pi)$ palladium hexafluorophosphate.
$\left[\mathrm{Pd}\left(\mathrm{C}_{10} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right) \mathrm{Cl}\right]_{2}(0.2 \mathrm{mmol})$ was treated in methanol with 0.42 mmol of $\mathrm{AgNO}_{3} . \mathrm{AgCl}$ was filtered ofí and then 1,2-bis(diphenylphosphino)ethane (0.4 mmol) and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ were added to the solution. Evaporation of the solvent under vacuum and addition of water gave a yellow compound. (Yield 70\%) (Found: C, 54.10; $\mathrm{H}, 4.60 . \mathrm{PdC}_{37} \mathrm{H}_{39} \mathrm{OP}_{3} \mathrm{~F}_{6}$ calcd.: $\mathrm{C}, 54.60 ; \mathrm{H}, 4.74 \%$).

Preparation of $\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right)(\right.$ ethylenediamine $\left.)\right] \mathrm{Cl}=($ Ethylenediamine $)$ -(1-methoxycycloocta-4-ene-8 $0,4 \pi$) palladium chloride.
$\left[\operatorname{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right) \mathrm{Cl}_{2}(0.315 \mathrm{mmol})\right.$ was treated with 0.75 mmol of ethylenediamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; a white compound precipitated, and more separated on addition of ether. Recrystallization was from methylene chloride/ether. (Yield 70\%) (Found: C, 38.40; H, 6.64; N, 8.32. $\mathrm{PdC}_{11} \mathrm{H}_{23} \mathrm{ON}_{2} \mathrm{Cl}$ calcd.: $\mathrm{C}, 38.70 ; \mathrm{H}, 6.74$; N, 8.20\%).

Preparation of $\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L}) \mathrm{Cl}\left(\mathrm{C}_{7} \mathrm{H}_{8}=\right.$ norbornadiene $)$.
$\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right) \mathrm{Cl}\right]_{2}$ and $\mathrm{L}-\mathrm{L}$ were mixed in a $1 / 2$ ratio in methanol. The solutions were filtered and set aside at $-20^{\circ} \mathrm{C}$ to give yellow solids. In this way
we prepared:
$\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)\left(2,2^{\prime}\right.$-bipyridyl) Cl (Yield 85%) (Found: $\mathrm{C}, 51.16 ; \mathrm{H}, 4.54$; $\mathrm{N}, 6.59 ; \mathrm{Cl}, 8.40 ; \mathrm{O}, 3.88 . \mathrm{PdC}_{18} \mathrm{H}_{19} \mathrm{ON}_{2} \mathrm{Cl}$ calcd.: $\mathrm{C}, 51.28 ; \mathrm{H}, 4.51 ; \mathrm{N}, 6.64$; O, $3.79 ; \mathrm{Cl}, 8.42 \%$).
$\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)(1,10-$ phenanthroline) Cl (Yield 60\%) (Found: $\mathrm{C}, 53.80 ; \mathrm{H}$, 4.31; $\mathrm{N}, 6.30 . \mathrm{PdC}_{20} \mathrm{H}_{19} \mathrm{ON}_{2} \mathrm{Cl}$ calcd.: $\mathrm{C}, 54.00 ; \mathrm{H}, 4.27 ; \mathrm{N}, 6.20 \%$).

Preparation of $\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)(1,10\right.$-phenanthroline $\left.)\right] \mathrm{PF}_{6}=(1,10$-phenan-throline)(exo-6-methoxy-2-norbornene-endo-5 $\sigma, 2 \pi$) palladium hexafluophosphate.
$\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right) \mathrm{Cl}_{2}(0.188 \mathrm{mmol})\right.$ was treated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with AgPF_{6} in a $1 / 2$ ratio. AgCl was filtered off and 1,10-phenanthroline (0.37 mmol) was added. The solutions were set aside at $-20^{\circ} \mathrm{C}$ to give a yellow precipitate. (Yield 65%) (Found: C, 43.38; H, 3.35; N, 5.05. $\mathrm{PdC}_{20} \mathrm{H}_{19} \mathrm{ON}_{2} \mathrm{PF}_{6}$ calcd.: C, 43.20; H, 3.42; $\mathrm{N}, 5.00 \%$).

Reaction of $\left[\mathrm{Pd}\left(\right.\right.$ diene $\left.\left.\cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right] \mathrm{PF}_{6}$ complexes with HCl (diene $=$ éndodicyclopentadiene, 1,5-cyclooctadiene; $\mathrm{L}-\mathrm{L}=2,2^{\prime}$-bipyridyl, 1,10-phenanthroline, diene $=$ endo-dicyclopentadiene, $\mathrm{L}-\mathrm{L}=1,2$-bis(diphenylphosphino)ethane. A suspension of $\left[\mathrm{Pd}\left(\right.\right.$ diene $\left.\left.\cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right] \mathrm{PF}_{6}$ in methanol was treated with a large excess of HCl. $\mathrm{Pd}(\mathrm{L}-\mathrm{L}) \mathrm{Cl}_{2}$ complexes were identified by comparison of their IR spectra with those of authentic samples. Reaction of $\left.\left[\mathrm{Pt}_{\left(\mathrm{C}_{8} \mathrm{H}_{12}\right.} \cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right]$ PF_{6} and $\left[\mathrm{Pt}\left(\mathrm{C}_{10} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right)(2,2\right.$-bipyridyl $\left.)\right] \mathrm{Cl}$ with $\mathrm{HCl}\left(\mathrm{C}_{8} \mathrm{H}_{12}=1,5\right.$-cyclooctadiene; $\mathrm{C}_{10} \mathrm{H}_{12}=$ endo-dicyclopentadiene; $\mathrm{L}-\mathrm{L}=2,2$ '-bipyridyl, 1,10-phenanthroline). A suspension of the dienylplatinum complexes was treated in methanol with an excess of HCl . $\mathrm{Pt}($ diene $) \mathrm{Cl}_{2}$ complexes were formed and identified by comparison of their IR spectra with those of authentic samples. Addition of FeSO_{4} to the filtrate gave an intense red colour, due to $\left[\mathrm{Fe}(\mathrm{L}-\mathrm{L})_{3}\right]^{2+}$.

Reaction of $\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L}) \mathrm{Cl}$ with $\mathrm{HCl}\left(\mathrm{C}_{7} \mathrm{H}_{8}=\right.$ norbornadiene; $\mathrm{L}-\mathrm{L}$ = 2,2'-bipyridyl, 1,10-phenanthroline, 1,2-bis(diphenylphosphine)ethane). A suspension of $\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L}) \mathrm{Cl}$ in methanol was treated with an excess of $\mathrm{HCl} ; \mathrm{Pd}(\mathrm{L}-\mathrm{L}) \mathrm{Cl}_{2}$ complexes were formed and identified by comparison of their IR spectra with those of authentic samples.

Reaction of $\left[\mathrm{Pd}\left(\right.\right.$ diene $\left.\left.\cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right] \mathrm{ClO}_{4}$ complexes with HClO_{4} (diene-1,5cyclooctadiene, endo-dicyclopentadiene; $L-L=2,2^{\prime}$-bipyridyl). A suspension of $\left[\mathrm{Pd}\left(\right.\right.$ diene $\left.\left.\cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right] \mathrm{ClO}_{4}$ was treated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with an excess of an aqueous solution of HClO_{4}. The endo-dicyclopentadienyl derivative decomposed, but $\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)(2,2\right.$-bipyridyl) $]\left(\mathrm{ClO}_{4}\right)_{2}$ was isolated. (Found: $\mathrm{C}, 38.53 ; \mathrm{H}, 3.64 ; \mathrm{N}$, $5.05 ; \mathrm{O}, 22.73 . \mathrm{PdC}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{O}_{\mathrm{s}}$:alcd.: $\mathrm{C}, 38.73 ; \mathrm{H}, 3.58 ; \mathrm{N}, 5.02 ; \mathrm{O}, 22.95 \%$).

Results and discussion

When a suspension of M (diene) Cl_{2} in methanol is treated with AgNO_{3} in a $1 / 2$ ratio, AgCl is precipitated, and $\left[\mathrm{M}\left(\right.\right.$ diene $\left.\left.\cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right] \mathrm{PF}_{6}$ compounds can be isolated after addition of $\mathrm{L}-\mathrm{L}$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}$. The formation of the dienyl complexes may be represented as in Scheme 1.

In neutral complexes, coordinated dienes usually undergo nucleophilic attack by conjugate bases of alcohols at the coordinated carbon atom [2]. In our case the reactivity towards methanol of the coordinated olefinic carbon should be enhanced by the bipositive charge of complexes II and III. It has also been reported that a trans attack of methanol or methoxide occurs on the olefinic

$$
\begin{aligned}
& \text { SCHEME 1. } \mathrm{M}=\text { Pd }{ }^{1 I} \text {, diene }=1.5 \text {-cyclooctadiene or dicyclopentadiene, } \mathrm{L}-\mathrm{L}=2,2^{\circ} \text {-bipyridyl or } 1,10 \text { - } \\
& \text { phenanthroline: } \mathrm{M}=\mathrm{Pt} \text { II. diene }=1,5 \text {-cyclooctadiene, } \mathrm{I}-\mathrm{L}=\text { bipyridyl or } 1.10 \text {-phenanthroline. } \\
& \text { M(ciene) } \mathrm{Cl}_{2} \frac{\mathrm{AgNO}_{3}}{\mathrm{Ci}_{3} \mathrm{CH}} 2 \mathrm{AGCl}+2 \mathrm{NO}_{2}^{-}+\left[\mathrm{M}\left(\text { diene }\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]^{2+} \xrightarrow{2-}-[\mathrm{M}(\mathrm{Ciene})(\mathrm{L}-\mathrm{L})]^{2+}\right. \\
& \text { (I) } \\
& \text { (II) } \\
& \left.\left.\left[M \text { diene } \cdot \mathrm{OCH}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]^{+} \xrightarrow{\mathrm{L}-\mathrm{L}}\left[\mathrm{M} \text { (diene } \cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right]^{+} \\
& \text {(I) }
\end{aligned}
$$

carbon of $\left[\mathrm{Pd}(1,5 \text {-cyclooctadiene })\left(2,2^{\prime} \text {-bipyridyl }\right)\right]^{2+}[13]$.
All the $\left[\mathrm{M}\left(\right.\right.$ diene $\left.\left.\cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right] \mathrm{JFF}_{6}$ compounds $\left(\mathrm{M}=\mathrm{Pd}^{11}\right.$, diene $=1,5$-cyclooctadiene or dicyclopentadiene, $\mathrm{L}-\mathrm{L}=2,2^{\prime}$-bipyridyl or 1,10 -phenanthroline; $\mathrm{M}=\mathrm{Pt}^{\mathrm{I}}$, diene $=1,5$-cyclooctadiene, $\mathrm{L}-\mathrm{L}=2,2^{\prime}$-bipyridyl or 1,10 -phenanthroline) are $1 / 1$ electrolytes in methanol. Their IR spectra show very strong absorptions in the region $1050-1100 \mathrm{~cm}^{-1}$, due to stretching vibrations of the $\mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$ group [9b], and characteristic bands of $\mathrm{PF}_{6}{ }^{-}\left(835 \mathrm{~cm}^{-1}\right.$ broad, vs and $560 \mathrm{~cm}^{-1} \mathrm{~s}$, or vs). The bipyridyl complexes also show an absorption at about $1600 \mathrm{~cm}^{-1}$, due to ring vibrations of the nitrogen-bonded ligand.
$\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right)(\right.$ ethylenediamine $\left.)\right] \mathrm{Cl}$ and $\left[\mathrm{Pd}\left(\mathrm{C}_{10} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right)(\mathrm{P}-\mathrm{P})\right] \mathrm{PF}_{6}$ ($\mathrm{C}_{8} \mathrm{H}_{12}=1,5$-cyclooctadiene, $\mathrm{C}_{10} \mathrm{H}_{12}=$ dicyclopentadiene; $\mathrm{P}-\mathrm{P}=1,2$-bis(diphenylphosphino)ethane) were better prepared by treating $\left[\mathrm{Pd}\left(\text { diene } \cdot \mathrm{OCH}_{3}\right) \mathrm{Cl}\right]_{2}$ with the appropriate chelated ligand. Both complexes are $1 / 1$ electrolytes in methanol, and their IR spectra show characteristic bands of the $\mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$ group; the ethylenediamine derivative also shows a series of absorptions in the region $3210-3090 \mathrm{~cm}^{-1}$ due to the coordinated diamine [9 b].
$\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \cdot \mathrm{OCH}_{3}\right)\left(2,2^{\prime} \text {-bipyridyl) }\right]^{+}\right.$reacts with HClO_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, giving the dicationic $\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(2,2^{\prime}\right.\right.$-bipyridyl) $]\left(\mathrm{ClO}_{4}\right)_{2}$ complex, and with HCl , in methanol, to give $\operatorname{Pd}\left(2,2^{2}\right.$-bipyridyl) Cl_{2}. Details of the mechanism of the latter reaction have been published [14], the formation of the five-coordinated intermediate $\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(2,2^{\prime} \text {-bipyridyl) } \mathrm{Cl}\right]^{+}\right.$being postulated.

Reactions of dienyl complexes with hydrochloric acid are affected by the nature of the central metal. [$\mathrm{Pd}\left(\right.$ diene $\left.\left.\cdot \mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right]^{+}$complexes react with HCl in methanol giving $\operatorname{Pd}(\mathrm{L}-\mathrm{L}) \mathrm{Cl}_{2}$ compounds, whereas the analogous reaction of the $\left[\mathrm{Pt}\left(\text { diene }-\mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right]^{+}$($\mathrm{L}-\mathrm{L}=2,2^{\prime}$-bipyridyl or 1,10-phenanthroline; diene $=1,5$-cyclooctadiene or dicyciopentadiene) affords Pt (diene) Cl_{2}.

The difference in the nature of the reactions between palladium and platinum compounds may be directly related to the stability of the metal-olefin π bond. The course of the reaction reflects the known lower stability of this bond in palladium systems. Thus $\left(\mathrm{C}_{8} \mathrm{H}_{12} \cdot \mathrm{acac}\right) \mathrm{Pt}_{2} \mathrm{X}_{2}$ (acac = acetylacetonate, $\mathrm{X}=\mathrm{Cl}$, Br, I) reacts with triphenylphosphine or arsine (L) yielding ($\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{acac}$) PtXL, whereas the analogous palladium compounds give only $\mathrm{PdL}_{2} \mathrm{X}_{2}$ [15].

Enyl derivatives of norbornadiene may have both a nortricyclenyl (VI) or norbornenyl (VII) structure.

It has been suggested that the bonding in the norbornenylmetal system might be better represented by a π-homoallylic structure [16] although such a conclusion has been questioned [17]. The conversion of norbornenyl complexes into

(VI)

(VII)
nortricyclenyl derivatives is promoted by Group V donor ligands, olefins or 1,3-dienes [18].
$\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)\left(2,2^{\prime}\right.\right.$-bipyridyl) $] \mathrm{PF}_{6}\left(\mathrm{C}_{7} \mathrm{H}_{8}=\right.$ norbornadiene $)$ was previously prepared by treating $\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right) \mathrm{Cl}_{2}\right.$ with AgPF_{6} and then with $2,2^{\prime}$ bipyridyl in tetrahydrofuran [9a]. When we carried out this reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 1,10-phenanthroline we obtained $\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)_{i} 1,10\right.$-phenanthroline $\left.)\right]$ PF_{6}. This complex is a $1 / 1$ electrolyte in methanol, and its IR spectrum shows characteristic bands of the $\mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$ group and $\mathrm{PF}_{6}{ }^{-}$anion. Both $\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right.\right.$. $\left.\left.\mathrm{OCH}_{3}\right)(\mathrm{L}-\mathrm{L})\right] \mathrm{PF}_{6}\left(\mathrm{~L}-\mathrm{L}=2,2^{\prime}\right.$-bipyridyl or phenanthroline) complexes can be considered norbornenyl derivatives. Treatment of $\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right) \mathrm{Cl}\right]_{2}$ with bipyridyl or 1,10-phenanthroline in methanol gave complexes formulated as $\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)\left(2,2^{\prime}-\right.$ bipyridyl $) \mathrm{Cl}(\mathrm{VIII})$ and $\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)(1,10$-phenanthroline) Cl (IX). The ${ }^{1} \mathrm{H}$ NMR spectrum of VIII in CDCl_{3} shows no resonance in the vinylic region. The most important signals were observed at a $4.4(\mathrm{br}, 1 \mathrm{H})$ and $3.3(\mathrm{~S}, 3 \mathrm{H}) \mathrm{ppm}$ and in the range $\partial 2.24-1.2 \mathrm{ppm}$. These features support a nortricyclenyl structure for complex VIII in CDCl_{3}. Furthermore because of the low solubility in methanol of VIII, IX and of $\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)(\mathrm{P}-\mathrm{P}) \mathrm{Cl} \mathrm{X}$ [19] only their molar conductivity could be measured in this solvent. Values of $\Lambda_{\mathrm{M}}\left(\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)$ for methanol solutions of VIII increase as the concentration of the complex decreases and conductivity values for a $3.00 \times 10^{-4} \mathrm{molar}$ concentration of $\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)(\mathrm{P}-\mathrm{P}) \mathrm{Cl}$ and for a 2.24×10^{-4} molar concentration of $\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{OCH}_{3}\right)(1,10$-phenanthroline $) \mathrm{Cl}$ are in the range of $1 / 1$ electrolytes. On the basis of these findings it may be inferred that in a dissociating solvent, such as methanol, the norbormenyl structure is preferred by complexes VIII, IX and X, whereas less polar solvents, such as CHCl_{3}, favour a nortricyclenyl arrangement [19]. Conductometric data for methanol solutions of VIII may be consistent with the equilibrium 1, which was also reported to occur in nitromethane solutions of analogous platinum complexes [20].

Methanol suspensions of compounds VIII, IX and X react with HCl giving $\operatorname{Pd}(\mathrm{L}-\mathrm{L}) \mathrm{Cl}_{2}(\mathrm{~L}-\mathrm{L}=2,2$ '-bipyridyl, 1,10-phenanthroline, 1-bis(diphenylphos-
phino)ethane) complexes. Details of the mechanisms of this reaction will be presented in a forthcoming paper.

Acknowledgments

We thank the Italian C.N.R. for financial support.

References

II L. Maresca, G. Natile and L. Cattalini, Inorg. Chim. Acta, 14 (1975) 79.
2 (a) J. Chatt, L. Vallarino and L.M. Venanzi, J. Chem. Soc., (1957) 2496; (b) R.G. Schultz, J. Organometal. Chem, 6 (1966) 465.
3- R. Fietropaolo, P. Uguagliati, M. Graziani and U. Belluco, Lnorg. Chim. Acta, 4 (1970) 637.
4 G. Calvin and G.E. Coates, J. Chem. Soc., (1960) 2008.
5 R. Palumbo, A. De Renzi, A. Panunzi and G. Paiaro, J. Amer. Chem. Soc., 91 (1969) 3870.
5 G.B. Anderson and B.J. Burreson, Chem. Ind., (1967) 620.
7 J. Tsuif and M. Takahashi, J. Amer. Chem. Soc, 87 (1975) 3275.
3 E.F.G. Johnson, J. Lewis and M.S. Subramanian, Chem. Commun, (1966) 117.
Θ (a) R.R. Schrock and J.A. Ostorn, J. Amer. Chem. Soc., 93 (1971) 3089; (b) P. Uguagliati, B. Craciani and U. Belluco, J. Chem. Soc. A (1970) 363.
10 M.S. Kharash, R.C. Seyler and F.R. Mayo, J. Amer. Chem. Soc. 60 (1938) 882.
11 J.K. Stillé and R.A. Morgan, J. Amer. Chem. Soc., 88 (1966) 5135.
12 F.A. Cotton (Ed.), Inorganic Syntheses, Vol. XIII, McGraw-Hill Book Company, (1972).
13 R. Roulet and R. Vouillamoz, Helv, Chim. Acta, 57 (1974) 2139.
14 E. Rotondo, G. Tresoldi, F. Faraone and R. Pietropaolo, Inorg. Chem., 15 (1976) 2102.
15 B.F.G. Johnson, J. Lewis and M.S. Subramanian, J. Chem. Soc. A, (1968) 1993.
16 R.P. Hughes and J. Powell. J. Organometal Chem., 60 (1973) 427.
17 A. Segnitz, P.M. Bailey and P.M. Maitlis, Chem. Commun., (1973) 698.
18 E. Ban, R.P. Hughes and J. Powell, J. Organometal. Chem., 69 (1974) 455.
19 D.R. Coulson, J. Amer. Chem. Soc., 91 (1969) 200.
20 R.N. Haszeldine, R.V. Parish and D.W. Robbins, J. Chem. Soc. Dalton, (1976) 2355.

